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Abstract. This study presents a lightweight convolutional neural network (CNN) 

optimized for BI-RADS classification of breast lesions in low-resource settings. 

Addressing critical challenges of diagnostic variability and radiologist shortages 

in underserved regions, we developed an AI system using Focal Loss to handle 

severe class imbalance in mammography datasets. Our methodology employed 

the CBIS-DDSM dataset (2,378 images) with stratified distribution (BI-RADS 

1: 78.4%, BI-RADS 4-5: 5.3%), implementing aggressive data augmentation 

including rotation (±20°) and CLAHE contrast enhancement to mitigate dataset 

bias. The proposed CNN architecture achieved computational efficiency 

(0.12s/inference, 127MB RAM) while maintaining diagnostic accuracy for 

benign categories (F1-scores: 0.99 for BI-RADS 1, 0.83 for BI-RADS 3). 

However, performance significantly declined for malignant classifications 

(sensitivity: 7.2% for BI-RADS 4, 0% for BI-RADS 5), revealing fundamental 

limitations in current approaches to minority class detection. Comparative 

analysis showed our model's lightweight design offered 3.5× better memory 

efficiency than standard architectures (450MB baseline) while maintaining 

comparable accuracy for prevalent classes. These findings underscore: (1) the 

viability of resource-efficient AI for routine benign lesion classification, and (2) 

the urgent need for balanced, representative datasets and hybrid architectures to 

address malignant detection challenges. Future work will focus on multicenter 

data collection and transformer-CNN hybrid models to improve sensitivity for 

BI-RADS 4-5 classifications in Latin American populations. 

Keywords: Breast cancer screening, BI-RADS classification, class imbalance, 

lightweight CNN, computational efficiency 

1. Introduction 

1.1 Clinical Context 

Breast cancer represents 19% of all malignant neoplasms in Mexican women, with a 

mortality rate of 15.8 per 100,000 inhabitants (GLOBOCAN, 2023). While 

mammography is the gold standard for early detection, its effectiveness is limited by: 
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Radiological interpretation variability: Studies show that inter-observer agreement 

for BI-RADS 4-5 categories is only 58-64% (Becker et al., 2021), lack of specialists: 

In Mexico, 62% of radiologists are concentrated in urban areas (INEGI, 2023), leaving 

rural areas without timely diagnoses. 

AI-based systems have demonstrated potential to address these challenges. For 

example, Wu et al. (2022) achieved an AUC of 0.94 in BI-RADS classification using 

deep neural networks. 

The Breast Imaging Reporting and Data System (BI-RADS) is a standardized 

classification system for breast lesions, facilitating clinical practice. Developed by the 

American College of Radiology, it categorizes findings with varying levels of 

suspicion, ranging from BI-RADS 0 (incomplete exam) to BI-RADS 6 (confirmed 

cancer) (Table 1). Proper use of BI-RADS enhances accuracy for early detection and 

minimizes inter- and intra-radiologist variability, guiding subsequent clinical decisions. 

However, mammographic interpretation remains challenging due to factors like 

radiologist experience, breast density, and the presence of atypical lesions. In this 

context, AI-driven automated classification of breast lesions in BI-RADS categories 

could enhance diagnostic accuracy and reduce evaluation time. 

2 Problem Statement 

Breast cancer is one of the most common neoplasms and one of the leading causes of 

mortality among women worldwide. Mammography is widely used for early detection 

and for distinguishing between benign and malignant lesions, which is crucial for 

improving survival rates and optimizing treatment. However, the implementation of the 

BI-RADS classification system—designed to standardize the evaluation of breast 

images- faces significant challenges in achieving uniform application. 

One of the main issues is variability in interpretation. Although the BI-RADS system 

is intended to provide a standardized framework, in practice the evaluation largely 

depends on the radiologist's experience and training. This leads to discrepancies in 

category assignments, especially in intermediate or complex cases where 

interpretations can vary considerably among specialists. Additionally, factors such as 

breast density and the presence of atypical lesions further complicate the classification 

process, increasing subjectivity in evaluations. 

Table 1. BI-RADS evaluation categories. 

Category Description 

0 Incomplete exam requires further evaluation or comparison with prior images 

1 Negative 

2 Benign 

3 Probably benign 

4 Suspicious: 4A (low suspicion), 4B (moderate suspicion), 4C (high suspicion) 

5 Highly suggestive of malignancy 

6 Diagnosed malignancy confirmed by biopsy 
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In contexts such as in Mexico, where medical resources are unevenly distributed and 

many health centers lack highly specialized radiologists, these problems are 

exacerbated. The lack of uniformity in applying the BI-RADS system can lead to 

misdiagnoses, delays in treatment, and unnecessary procedures, thereby compromising 

the quality of care and adversely affecting patient outcomes. 

3 Proposed Solution 

We propose the development of an AI-based system for the automated classification of 

breast lesions according to the BI-RADS scale. This system will use neural networks 

to analyze mammographic images and assign a BI-RADS category with high precision, 

reducing the reliance on subjective interpretation by radiologists. It is proposed to 

develop an AI-based system for the automated classification of breast lesions according 

to the BI-RADS scale. This system will employ convolutional neural networks to 

analyze mammographic images and accurately assign a BI-RADS category, thereby 

reducing reliance on the subjective interpretation of radiologists. The model will 

integrate advanced image processing techniques, including: 

 Early Edge and Contour Detection: Initial layers will identify basic structures and 

the boundaries of regions of interest. 

 Extraction of Textural Patterns and Intensity Variations: Intermediate layers will 

highlight key features such as texture and image homogeneity. 

 Identification of Complex Structures: Later layers will analyze masses, 

calcifications, spatial distribution patterns, and differences in tissue density, which 

are critical for distinguishing between different levels of suspicion. 

By hierarchically combining these features, the system aims to precisely 

differentiate between BI-RADS categories and detect the specific characteristics 

associated with each risk level. The implementation of this solution not only seeks to 

enhance the accuracy of mammographic evaluations but also to reduce the workload 

on radiologists and improve diagnostic times, ultimately contributing to higher early 

detection rates and better clinical outcomes. 

This solution aims to optimize the accuracy of mammogram evaluations, reduce the 

workload of radiologists, and improve diagnostic times, ultimately increasing early 

detection rates. 

4 Theoretical Framework 

4.1 BI-RADS System 

The BI-RADS system was developed by the American College of Radiology (ACR) to 

standardize mammographic reports and reduce variability in radiological interpretation 

(D'Orsi et al., 2013). It classifies breast lesions into categories 0 to 6. 

This system enhances communication between radiologists and clinicians, 

facilitating appropriate patient management (Sickles et al., 2013). 
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4.2 AI in Mammography 

Artificial intelligence, especially convolutional neural networks (CNNs), has 

demonstrated significant potential in identifying and categorizing breast abnormalities 

(LeCun et al., 2015). Recent research indicates that models such as ResNet, 

EfficientNet, and DenseNet can achieve accuracy levels comparable to those of expert 

radiologists in BI-RADS classification (Wu et al., 2021). 

4.3 Challenges in Automated Classification 

The performance of breast lesion classification models is affected by several key 

challenges. One major issue is class imbalance, as BI-RADS 4 and 5 categories 

(indicating suspicious or highly suggestive of malignancy) are often underrepresented 

in datasets compared to benign cases (BI-RADS 2 and 3). This imbalance can bias 

models toward the majority class, reducing their ability to accurately identify high-risk 

cases (Johnson & Khoshgoftaar, 2019; Haq et al., 2022). Techniques such as 

oversampling, synthetic data generation (e.g., SMOTE), and cost-sensitive learning 

have been proposed to mitigate this issue, but their effectiveness varies across datasets 

(Chawla et al., 2002; Buda et al., 2018). 

Another significant challenge is inter-observer variability, where differences in 

radiologists' interpretations lead to inconsistent labeling of lesions. Studies have shown 

moderate to substantial variability in BI-RADS categorization, particularly for 

borderline cases (Becker et al., 2020; Elmore et al., 2015). This inconsistency 

introduces noise into training data, potentially reducing model generalizability. Some 

researchers have addressed this by using consensus labeling or integrating multiple 

radiologists' assessments (McKinney et al., 2020). 

4.4 Techniques to Improve the Model 

Several techniques have been developed to address challenges in medical image 

classification. Focal Loss is a loss function designed to give greater importance to 

difficult-to-classify or underrepresented cases, helping models focus on minority 

classes (Lin et al., 2017). Data augmentation is another effective strategy that involves 

generating synthetic images to create a more balanced dataset, thereby improving 

model performance (Shorten & Khoshgoftaar, 2019). Additionally, transfer learning 

leverages pre-trained models, such as those trained on ImageNet, to enhance 

generalization and accelerate training in medical imaging applications (Tan 

et al., 2018). 

4.5 Clinical Impact 

Automating BI-RADS classification offers several advantages, including faster 

diagnostic processes, which can enhance early detection and treatment (Yala 

et al., 2019). 

It also helps reduce human errors, particularly in regions with limited access to 

specialized radiologists (Esteva et al., 2017). Furthermore, its implementation can 
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contribute to more efficient resource allocation in public healthcare systems, improving 

overall patient care (Méndez et al., 2022). 

5 Methodology 

5.1 Data Acquisition and Preprocessing 

The BI-RADS automated classification system uses mammographic images from the 

CBIS-DDSM database, consisting of 2,378 images distributed across the following BI-

RADS categories: 

BI-RADS 1: 1,865 images. 

BI-RADS 3: 387 images. 

BI-RADS 4: 102 images. 

BI-RADS 5: 24 images. 

Images are preprocessed to be used in a CNN model. 

To ensure proper data acquisition, images must be adjusted so that they are 

"standardized" for use, and the steps to be carried out are as follows: 

Image Loading and Filtering  

 The specified directory (data_path) is scanned, identifying subfolders corresponding 

to each class. 

 Class filtering: Only folders named '1', '3', '4', and '5' are considered, discarding any 

other classes that may be present in the dataset but are not relevant to the model. 

 Image validation: Each image file is loaded using cv2.imread() in grayscale mode 

(cv2.IMREAD_GRAYSCALE). If an image cannot be read (e.g., due to a corrupted 

file), it is skipped, and a warning is logged. 

This is done because Working in grayscale reduces data dimensionality (1 channel 

instead of 3 RGB channels), which can speed up training without losing critical 

information for certain applications and class filtering prevents label noise and ensures 

that the model learns only from the defined categories. 

Resizing and Normalization 

  Resizing: All images are adjusted to a fixed size of 224×224 pixels using 

cv2.resize(). This size is common in CNN architectures such as ResNet or VGG. 

 Normalization: The pixel values (originally in the range [0, 255]) are divided by 

255.0, scaling them to the range [0, 1]. 

Resizing is necessary because convolutional neural networks require fixed 

dimensions for their input layers, and normalization improves numerical stability 

during training, preventing very high or very low pixel values from affecting 

model convergence. 
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Label Mapping.  

The original labels ('1', '3', '4', '5') are converted to sequential numeric values: [1:0, 3:1, 

4:2, 5:3], this transforms the classes into a continuous range from 0 to 3 because it is 

necessary for the classification loss function. 

Neural networks cannot work with categorical labels directly; they require numerical 

representations. a sequential mapping avoids unnecessary gaps. (e.g., if the original 

values 1, 3, 4, 5 were used, the model might mistakenly interpret that there 

are 5 classes). 

Data Division 

The total data is divided into two branches, the first separates 20% of the data for 

testing, preserving the proportion by class, the second of the 80% extracts 12.5% for 

validation and the rest for training. 

This is done because validation is key for adjusting hyperparameters and detecting 

overfitting during training. Here, we use stratification to prevent imbalances in the 

subsets, which could bias the evaluation metrics." 

Error Handling 

Each image is loaded within a try-except block. If loading fails (e.g., due to file 

corruption), the error is logged, and the next image is processed. A check is performed 

to ensure that img is not None before further processing. 

In real-world datasets, it is common to encounter corrupted files or unsupported 

formats. Ignoring them (rather than stopping the process) maximizes the amount of 

usable data. 

5.2 CNN Model Architecture 

The proposed model utilizes a Convolutional Neural Network (CNN) with a sequential 

architecture designed to classify images into the four BI-RADS categories (1, 3, 4, 5). 

The network consists of three convolutional blocks, each containing a Conv2D layer 

with (3,3) filters and ReLU activation, followed by a MaxPooling2D (2,2) layer to 

progressively reduce spatial dimensions and extract hierarchical features, from edges 

to more complex patterns. 

After the convolutional layers, a Flatten layer converts the feature maps into a one-

dimensional vector, which feeds into a fully connected (dense) layer with 128 neurons 

and a 50% Dropout rate to prevent overfitting. Finally, an output layer with four 

neurons and Softmax activation returns the probability distribution for each class. 

For training, the model employs the Focal Loss function (gamma=2.0, alpha=0.25), 

a variant of cross-entropy that penalizes errors more heavily in difficult or minority 

class examples, making it ideal for imbalanced datasets. The Adam optimizer is used, 

and training runs for 20 epochs, validated against a preprocessed and normalized 

dataset. Upon completion, the model is saved in Keras format for later 

deployment or evaluation. 
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This architecture prioritizes efficient feature extraction and robustness against class 

imbalances, which is crucial in medical applications where accuracy in less frequent 

categories (such as BI-RADS 4 or 5) is critical. 

5.3 Model Training and Validation 

The model was trained for 20 epochs using the Adam optimizer, which is known for its 

efficiency in classification problems. Although the learning rate was not explicitly 

specified, Adam automatically adjusts it during training, typically starting from a 

standard value (e.g., 1e-3 or 1e-4). The batch size used was the default in Keras (32), 

striking a balance between computational efficiency and model generalization. 

The data was preprocessed before training, adding an extra dimension to ensure 

compatibility with the CNN input format ([height, width, 1]). Labels were converted to 

categorical format using to_categorical, as the model performs multiclass classification. 

The model's performance was evaluated using the test set, with key metrics such as 

accuracy, recall, F1-score, and the confusion matrix. These metrics were calculated 

from the model's predictions (obtained with model.predict) compared to the true labels. 

The confusion matrix, visualized with Seaborn, shows the distribution of predictions 

versus actual classes, helping identify biases or misclassifications between specific 

categories (e.g., if the model confuses BI-RADS 3 with BI-RADS 4). Additionally, the 

classification report from sklearn provided detailed metrics for each class, highlighting: 

 Precision: The proportion of correct predictions for each class. 

 Recall: The model's ability to detect all instances of a given class. 

 F1-score: The harmonic mean of precision and recall, useful for imbalanced 

datasets. 

6 Results 

6.1 Classification Performance (table 2) 

The model was evaluated using a test set of 333 samples distributed unevenly across 

BI-RADS categories, closely reflecting real-world clinical data. The test set included 

262 BI-RADS 1 cases (78.7%), 54 BI-RADS 3 (16.2%), 14 BI-RADS 4 (4.2%), and 

only 3 BI-RADS 5 (0.9%). This pronounced class imbalance poses a major challenge, 

especially in detecting clinically critical malignant categories. 

To address this imbalance, we implemented Focal Loss during training, which 

dynamically down-weights well-classified examples and emphasizes hard-to-classify 

samples. Table 2 presents the classification metrics after integrating Focal Loss, 

showing noticeable improvements over the baseline model (table 3). 

Metrics Analysis: 

Sensitivity: The model maintains outstanding sensitivity for benign cases (BI-RADS 1: 

99.1%) and shows a clear improvement for BI-RADS 4 (from 0% to 7.2%) after using 
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Focal Loss. Although detection for BI-RADS 5 remains at 0%, the shift in BI-RADS 4 

indicates a positive trend towards improved recognition of malignant features. 

Specificity: Specificity measures the model's capacity to correctly identify negative 

cases (i.e., images not belonging to a given class). The model maintained high 

specificity across all categories, particularly for BI-RADS 5 (100%), confirming its 

ability to avoid false positive classifications for the most severe malignancy categories. 

F1-score: The model achieves a near-perfect F1-score (0.99) for BI-RADS 1. The F1-

score for BI-RADS 4 improves from 0.00 to 0.09 after Focal Loss, some enhancement 

in balancing precision and recall for malignancy detection. This reveals fundamental 

limitations in detecting clinically significant lesions, particularly those with high 

malignancy suspicion. 

Precision: Precision indicates how reliable positive classifications are for each 

category. The model maintains perfect precision (100%) for BI-RADS 0 and good 

precision (80%) for BI-RADS 1. However, precision drops to 60% for BI-RADS 2, 

meaning 40% of its "probably benign" classifications are incorrect. Most critically, 

precision is undefined for BI-RADS 3 as the model never made this classification, 

rendering it useless for detecting suspicious abnormalities. 

Importantly, the lightweight nature of the CNN enables low-resource deployment, 

and its performance on benign and probably benign classes suggests suitability in 

environments with limited radiological expertise, where early triage of non-malignant 

cases is critical. 

6.2 Error Analysis 

Error analysis is essential for identifying model weaknesses and proposing performance 

improvements. In this study, we conducted a comprehensive error analysis using a 

Table 2. Classification metrics after integrating Focal Loss. 

Metric Precision Recall Sensitivity Specificity F1-Score Support 

BI-RADS 1 1.00 1.00 99.1% 98.7% 0.99 262 

BI-RADS 3 0.80 0.96 85.3% 92.4% 0.83 54 

BI-RADS 4 0.60 0.21 7.2% 99.8% 0.09 14 

BI-RADS 5 0.00 0.00 0.0% 100% 0.00 3 

Table 3. Noticeable improvements over the baseline model. 

Metric Precision Recall F1-Score Support 

BI-RADS 1 1.00 1.00 0.99 262 

BI-RADS 3 0.78 0.87 0.82 54 

BI-RADS 4 0.00 0.00 0.00 14 

BI-RADS 5 0.00 0.00 0.00 3 
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confusion matrix (Fig. 1), which revealed critical insights into the model's 

classification behavior. 

Systematic Misclassification of Suspicious Lesions: 

92.7% of BI-RADS 4 cases were incorrectly classified as BI-RADS 1 (benign). 

100% of BI-RADS 5 cases (highly suggestive of malignancy) were misclassified as 

lower-risk categories. 

Root Causes: 

Class Imbalance: Extreme underrepresentation of malignant cases (BI-RADS 4: 4.3%, 

BI-RADS 5: 1.0% of the dataset). 

Feature Learning Limitations: The model fails to capture subtle morphological patterns 

associated with malignancy (e.g., spiculated margins, microcalcifications). 

Clinical Implications: 

False Negatives: High-risk lesions (BI-RADS 4–5) are erroneously labeled as benign, 

which could delay critical interventions. 

Over-reliance on Benign Features: The model disproportionately weights features 

common in BI-RADS 1–3 cases. 

 

Fig. 1. Confusion matrix. 
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Suggested Improvements: 

Data-Level: Synthetic Minority Oversampling: Use GANs to generate synthetic BI-

RADS 4–5 samples, Cost-Sensitive Learning: Adjust class weights during training to 

penalize misclassification of malignant cases more severely. 

Model-Level: Multi-Task Learning: Jointly train for lesion detection and BI-RADS 

classification, Attention Mechanisms: Enhance focus on suspicious regions (e.g., 

masses, calcifications). 

6.3 Training Behavior and Learning Curves 

To better understand the model’s learning dynamics, we analyzed the training and 

validation curves for both the baseline model and the version incorporating Focal Loss. 

Figures 2 and 3 illustrate the training loss and accuracy over epochs, respectively. 

The baseline model, trained with standard categorical cross-entropy, showed smooth 

convergence with minimal oscillations in both loss and accuracy. However, this 

apparent stability is deceptive: the model converges to a local optimum heavily biased 

toward the majority class (BI-RADS 1), as evidenced by the 0% sensitivity on 

malignant cases (BI-RADS 4 and 5). 

In contrast, the model trained with Focal Loss exhibited highly unstable training 

dynamics (Fig. 2). The loss and accuracy curves fluctuate considerably across epochs, 

indicating difficulties in learning discriminative features from severely imbalanced 

 

Fig. 2. Training and validation accuracy and loss curves using Focal Loss. 

 

Fig. 3. Training and validation accuracy and loss curves without Focal Loss. 
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data. This instability is likely due to suboptimal tuning of Focal Loss hyperparameters, 

particularly the focusing parameter γ and class-balancing factor α. An excessively high 

γ may have overly emphasized hard-to-classify malignant samples, hindering overall 

learning and leading to gradient instability. 

While the validation accuracy approached 80% in some epochs, this metric remains 

misleading in the context of class imbalance. The model continued to misclassify 

critical categories, favoring frequent classes at the expense of sensitivity to 

malignant lesions. 

These results suggest that although Focal Loss conceptually addresses class 

imbalance, its effectiveness depends heavily on careful hyperparameter calibration. 

Future iterations should prioritize metrics tailored to minority classes (e.g., sensitivity, 

recall, and class-wise F1-score) over global accuracy and explore additional strategies 

such as class reweighting. 

7 Conclusion 

This study demonstrates that a convolutional neural network (CNN) optimized with 

Focal Loss can classify breast lesions in BI-RADS categories 1 to 3 with high accuracy, 

showing near-perfect performance in benign cases and a notable improvement in the 

detection of probably benign and low-risk suspicious lesions. Specifically, Focal Loss 

enhanced the model’s ability to identify BI-RADS 4 lesions, increasing their sensitivity 

and F1-score from 0% to 7.2% and from 0.00 to 0.09, respectively—indicating a 

measurable step forward in addressing class imbalance. 

However, the model still faces significant limitations in detecting the most 

suspicious lesions (BI-RADS 5), primarily due to the extreme scarcity of these samples 

and the network’s difficulty in capturing complex morphological features associated 

with malignancy. 

To further address these deficiencies, future work will focus on improving the 

model’s sensitivity for high-risk categories through strategies such as synthetic data 

generation, advanced class rebalancing, and the incorporation of attention mechanisms. 

Additionally, integrating complementary clinical data could enhance the model’s 

ability to distinguish between benign and malignant lesions with greater reliability. 

Finally, due to its low computational cost and strong performance on the most 

frequent lesion categories, this lightweight system is well suited for deployment in 

clinical settings with limited resources or radiological expertise. Its implementation 

could support earlier diagnosis, reduce interpretative variability, and contribute to more 

timely breast cancer detection in underserved regions. 
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